US009235535B1

a2 United States Patent 10) Patent No.: US 9,235,535 B1
Shim et al. 45) Date of Patent: Jan. 12, 2016
’
(54) METHOD AND APPARATUS FOR REDUCING 8,122,158 B1 2/2012 Kudva et al.
OVERHEADS OF PRIMARY STORAGE BY 8,732,417 B1* 52014 Stringham ... 711/162
2007/0079089 Al* 4/2007 Ohranetal. 711/162
TRANSFERRING MODIFIED DATA INAN 2008/0082593 Al 4/2008 Komarov et al.
OUT-OF-ORDER MANNER 2008/0208929 Al 8/2008 Phillipi
2008/0307160 Al* 12/2008 Humlicekccco..... 711/113
(71) Applicants:Hyong Shim, Basking Ridge, NJ (US); 2009/0167871 A1~ 7/2009 Usui
Philip N. Shilane, Yardley, PA (US); 2012/0278569 Al* 11/2012 Kawakami etal. 711/162
. ’ . ; 2012/0311246 Al* 12/2012 McWilliams et al. 711/103
Windsor W. Hsu, San Jose, CA (US) 2014/0082310 Al* 3/2014 Nakajimac.... 711/162
(72) Inventors: Hyong Shim, Basking Ridge, NJ (US); OTHER PUBLICATIONS
Philip N. Shilane, Yardley, PA (US);
Windsor W. Hsu, San Jose, CA (US) Non-Final Office Action, U.S. Appl. No. 13/665,884, dated Dec. 11,
2014, 14 pages.
(73) Assignee: EMC Corporation, Hopkinton, MA Non-Final Office Action, U.S. Appl. No. 13/665,881, dated Dec. 17,
(as) 2014, 11 pages.
Office Action mailed Apr. 3, 2015, for U.S. Appl. No. 13/665,884,
(*) Notice: Subject to any disclaimer, the term of this filed Oct. 31, 2012, 17 pages.
patent is extended or adjusted under 35 Office Action mailed May 29, 2015, for U.S. Appl. No. 13/665,881,
U.S.C. 154(b) by 226 days. filed Oct. 31, 2012, 12 pages.
(21) Appl. No.: 13/665,885 * cited by examiner
(22) Filed: Oct. 31, 2012 Primary Examiner — Kevin Verbrugge
Assistant Examiner — Zubair Ahmed
51) Int.CL 74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
ey, Ag Y y
GO6F 12/16 (2006.01) Zafman LLP
GO6F 7/08 (2006.01)
GOGF 7/24 (2006.01) (57) ABSTRACT
(52) US.CL Techniques for reducing overheads of primary storage trans-
CPC GO6F 12/16 (2013.01); GOGF 7/08 (2013.01); ferring during a backup by transferring in an out-of-order
GO6F' 7/24 (2013.01) manner are described herein. According to one embodiment,
(58) Field of Classification Search in response to a request at a primary storage for a backup of a
CPC GOGF 12/16 plurality of data blocks, a transfer order of dirty data blocks is
USPC et 711/162 determined based on an access assessment of the dirty data
See application file for complete search history. blocks, wherein the dirty data blocks are data blocks of the
. plurality of data blocks that have been changed from a previ-
(56) References Cited ous backup, and wherein the transfer order is different from a

U.S. PATENT DOCUMENTS

7,054,790 Bl 5/2006 Rich
7,284,019 B2 10/2007 Adkins et al.
7,739,677 B1* 6/2010 Kekreetal. 717/168

Receive a transfer order determination

sequential logical order of the dirty data blocks provided by
the primary storage. Then the dirty data blocks are transferred
to a secondary storage in the determined order.

24 Claims, 13 Drawing Sheets

request with dirty data blocks specified.

}/ 902

900

The dirty data block is in

208

904
Select a dirly data block.

YES

or close to “Hot Region™?

Y % 910
/ A stable read resource ready
\ for the dirty data block? ;

7/ The dirty data block is
important to protect
N frequently? 7

!

Put the dirty data block ina
higher order for transfer.

Access
Assessment
920

916
Determine the order.

924

US 9,235,535 B1

Sheet 1 of 13

Jan. 12, 2016

U.S. Patent

L
(§79)1
wejsAg L
abeialg 601 5T 8ot
dmyoeg “69)| (Shun sopg |(Shun
abeiolg abeioig dmyoeg afeiolg
Arepuooeg

0c¢t
-\

| IoT

88l
Jojeujwisieq
18pIQ Jojsuel|

8l
01607
uo109101d BleQg

081 obeioig Arewiidg

981
Jexoeld) sbueyp

Z8l sjeseleq

901
suibug dmyjoeg

GOJ Joneg uonesiiddy dnyoeg

001

US 9,235,535 B1

Sheet 2 of 13

Jan. 12, 2016

U.S. Patent

¢ "9Old
0. 3WN|OA [e01607
00 00
912 Yo0lg _OIZPoE |, 8070 " | 20z ¥o0lg | 53» I |
N U A S S— ;

. /IN

MM JIMMIMMMMIMIMIMI IR I 1 MM

pouad zee
Jajsues]

08z (O/1 peaY =4 ‘Q/I SIIM = M) BuUl[BWI| 8del]

US 9,235,535 B1

Sheet 3 of 13

Jan. 12, 2016

U.S. Patent

Ve "Old

‘so)e|dod
Jajsues) 9joym

3y} B0UO _|BulIou,
0} joge] (si01088)
¥0¢ $}00i 19SS
abeuog

Aiepuooeg A//Iul\

d

S

"(5101008)

syo0iq AUIp |
iejsuelly Jajsuel
Y}iew pue
(s401088)
$)00iq App
Ayuspl'e
GOT Jon19g uoneoyddy dmjoeg

00¢g

‘1senbal dnmyjoeq
e 8 eniuy|

e8¢ 208dg Jousdeug

0a¢ ebrioig Arewind

¢8¢ sseleq

oysdeus ayej 7

,Jejsuel), pajaqe; |
(si0100s) Syo0|q |

0 SB}IM JUBYD |
usym Ajuo (siojoas) |
$00{q ejeoydn("+

20
1SOH

US 9,235,535 B1

Sheet 4 of 13

Jan. 12, 2016

U.S. Patent

£seolg

. 96e¥d01g | ¥GEPoIg
: i i 1

S A

............ sne)s
: : L e 20

. 968

x‘oo_m

yGe oolg
A

¢5E001d

A

N_|

g¢ 'Old

| pgeop0g
| aeumin

LN]

snjels 10d

. 95E300Ig pGE0Ie |, ¢Se 001

—— :

[n] - . ey

9¢e

x_oo_m

¥GE %00lg

25¢

b
A

20|19

“Jajsuel] 9ge
300id JO pug gL

smels 1od

. ogeeolg |
o Blip eeodngg |

95t

50079
A

pGe P0ig
A

st

5
A

507G

41y
390ig 0} 1AA

'9G€ %00id
Buiuesues] :z1

smejs 1od

i $S¢€ X00ig jo
mE>>9mo=a:Doz

99¢

x_oo_m

pSe 01g

FAsS

3
h

00|9

'¢GE Hooig
Suniejsuei] (L1

snjejs Lod

‘suels
Josuely 0L

smels 10d

US 9,235,535 B1

Sheet 5 0of 13

Jan. 12, 2016

U.S. Patent

V¥ 'Old

¥0¢

“19jsuey) 8}8|dwoo |
(si03088) $400/q |

B8] 8ou0 |ewsou, |
0} joge| (s101088) -

obeloig

"(s403085)
s$300|q Auip
i9jsuel] v

0% Joniag uoneoyddy dmyjoeg

Aiepuogag /

08E obeloig Asewid

IO +Y | gge soBdg ousdeus Z8g siesereq

. Jajsuely,
MieWw pue
(s101098)
$3o0[q Auip
Ausple

‘1senbas dmyjoeq

B ajeniu|’|

0ov

joysdeus exe| 'z

. 49jsuel], psjege|
{s101008) $00|q

18 SSjlM JUSI0
usym Ajuo (s10109s)
$300iq aeaydng +

20¢
JSOH

US 9,235,535 B1

Sheet 6 of 13

Jan. 12, 2016

U.S. Patent

gseyoolg | yeewoolg | ZSewoold | , 998O0018 . vSE0IE | ¢GeRoIE .
_ i I { : \ A : A avy ‘Old
__________________________ =TT oo
____________ R bbb ned gy <
H " a - LN N LN smeg 19d
gseyo0ls | vsedpoolg | zgewold | ggeyo0lg . paedolg . cGe ol
-\ A : : A
___ Sejsinil 5
............................ xooum %o U:m ,MHI_I
snyelg
[N] 199 LN | smes 10d
OGE 01 . vGe o0ld |, 2Ge %o0id : :
! ; ; , 2se m
! I : A <1
"Z6e , {29018 01 S |
o e pee—rssi—.t——p—h——t———— e —
ajeoydncg oN Buiuesues] :z1
snels 19d
OGEYo0Ig | vSEOPOl | ¢SEP0l | e
: k <3

vee
%20]d 4O 9}M '¢GE A00Ig
uogesldng oN Buiesuel] 1L
snieig 10d
‘suels

Jsisuely 0L

snjels 10d

US 9,235,535 B1

Sheet 7 of 13

Jan. 12, 2016

U.S. Patent

00S

............. e

Sm\

)00|q BIEP 1S4l} BU} O} BIEP POAISOS] SU} HWWOD

!

805 d

"S)20[] Bl1ep O 189S pajjiiuspl ayl Ut si %00(q elep 184y ayi i
3201 Blep 111 8U] JO SJUSIU0D JUaLIND aaiasaid ‘usjsues) ay) Buunp sbelios
Asewnid sy} je ¥%o0|q B)Ep 181 B 0) 91UM aq 0) elep Buinigosas 03 asuodsal uj

!

906 d

IoMBU
e JoA0 a6RI0IS AIBPUOISS B} 0] %I0|g BIEP JO 198 PaInuUap! ouyy Jajsuel]

A

oG ="

‘abeio)s Aiepucoss e 0}
paidoo aq 0} ale jey] Joysdeus painided a4} JO SHO0jg BIep JO 18S B Ajuap|

i

'$HO0Iq elep Jo Aujeinid ay) O 91B1S JUDISISUOD B sjuasaldal joysdeus
a1 UlBIBUM ‘$X00|q BIEp JO Aleln|d ey jo dmyoeq e Joj abeiols Alewnd e
12 Js8nbai & 0} ssuodsal Ul s¥00|q Blep jo Ajljeinid e jo Joysdeus e ainyde)

US 9,235,535 B1

Sheet 8 of 13

Jan. 12, 2016

U.S. Patent

99 'Old

V9 'Old

{3 gt
3 HELE

ALy apgt
o AR HIZLS

jersdiu] dmyoeg

Gy pepnd g

eslEAly O
- e A0 mwﬁ R S Aricy ﬁﬁ
-~ @A 82 g KEHCY BR L

jeasoy| dmyoeg

{1 Lsamg =ndy
peaiysaly o8RG

© % o

o ®

- BUEBEEE gL
o SLNSRRE BOLS

y Bugsrien

O SR %

up-o-Ade

- BUESYE B
o SUHSREH §2

7,
i

Spaps-uo-padon
Fyaden sum|op

US 9,235,535 B1

Sheet 9 of 13

Jan. 12, 2016

U.S. Patent

L 'Old

»0¢
abeioig
Aiepuoosag A/{\
a\\\
\\
"$)00[q BlRp
Auip Jojsuel g ;
.wxoo_nﬂmv

Auip Anusp| g

GOE 1an19g uonesiddy dmyoeg

o

e
e

i

004

1senbas dnxoeq |
B oIl |

‘suisped
$85208 U0 poseq
400(q ejep Aup
JO JopJo Ivjsuei}

e auiuLLleqy

88¢ aoedg jo

/s

08¢ ebelioig Arewiud \\

ysdeug 7 Z28g sjeseeq

1oysdeus ejey 7

208
JSOH

US 9,235,535 B1

Sheet 10 of 13

Jan. 12, 2016

U.S. Patent

008

8 'Old

808 \

"18pIo Jojsuen
pueiwisiep ay) Ui obeiols AlBpucoas e 0} $300(q Blep ALIp 8 Jojsuei]

08 e

‘obeso)s Atewud sy
Aq papincid sxo0iq ejep ALIp 8y} Jo Joplo [ea1bof fenuanbas B wol) JUsiayip
Buleg Japio Jejsuel) sy pue ‘dnyoeq snoiaald e wol pabueyd useq
aAey jey} s300lq ejep Buieq syoolq elep ALp sy %00jq elep AHp 8y} jo
usaped $$920E UR UO Paseq SHO0|g Blep ALIP JO J9PIO JajSuRl) B auiuIgleg

‘dnyoeq e Joj abelo)s Aewud e e jsanbsi e aaeney

US 9,235,535 B1

Sheet 11 of 13

Jan. 12, 2016

U.S. Patent

¥26 /

*lapJo ay) suiwseq
916 d

6 "Old

‘Jojsuely Joj Joplo saybiy

€ Ul %00|q erep AuIp oy Ind

)
I

e / (Anuanbay ™ .
JUSWISSaSSY
$5800Y = 1sj04d of Juepoduwi 5

!

S3A

<

\/ siyoolq elep Auipayy
[A4%S]

|\ SRS — e e e
o}
ST T TN

$300Iq BJEp AuIp oYy doy
Apeal 90inosal peal |geIS v

/
)

067 = =

ON

\ ¢.U0IBay J0H, 0} 8S0}0 10

SaA V/ ul s100]q ejep Auip oy
806

A

N00|q BJEP ALIP B 109(0S
06 \

006

-

z06 —

‘paynads syooig elep AUIp Uiim 1sanbai
UOHBUILLIBISP JOPIO0 JojSURL) B SAIB08Y

US 9,235,535 B1

Sheet 12 of 13

Jan. 12, 2016

U.S. Patent

0001

0L "Old

"SSAUI0H JO UOHOIPald

wvor\

\ £saun AuBW USHLIM

V/ S1%00]q BYep ALIp 8y L

101

\ ;uoibai joy e 0} pasop

V/ s15400]q B1Ep AUIp 8y]
0101

\ SAIIUBDSE UBTLIM UD3]G

V/ sey xo0jq elep Aup 8y
8001

\ SUBSHLM
Buiaqg 01 850} AjjeaisAyd

V/ %00iq ejep AuIp oyl
900}

$8420[q
ejep Auip jo Aujeinid

NN NV N

V/ B 0] 8500 AjjeaisAyd
00jg B1Bp AlIp 8
Y001 >00(q e1ep AJIp 8y]

¢ eiepeow pajepdn
Apuenbaly 0y as0j0 AjfeoisAyd

N

V/ 10 Uj %00iq e1ep Auip syL
2001

US 9,235,535 B1

Sheet 13 of 13

Jan. 12, 2016

U.S. Patent

. 0Ll
bl Ol (shiun ebeioig
A
4"
aoepayu} yun abeiolg
0011

auibug abeloig
uopeoidnpag

90t
Jojeutwiyq ajeaydng

!

¥0L1
Jeuswbeg

:

8011
jojuon) WasAg a4

!
Y

<OLL
Q0BLISIU| BOIAISS 914

r

\

(u

Vill
oneayddy dmyjoeg “6-9)
(shuaio

US 9,235,535 Bl

1
METHOD AND APPARATUS FOR REDUCING
OVERHEADS OF PRIMARY STORAGE BY
TRANSFERRING MODIFIED DATA IN AN
OUT-OF-ORDER MANNER

RELATED APPLICATIONS

This application is related to co-pending U.S. patent appli-
cation Ser. No. 13/665,884, entitled “Method and Apparatus
for Reducing Overheads of Primary Storage while Transfer-
ring Modified Data,” filed Oct. 31, 2012, and co-pending U.S.
patent application Ser. No. 13/665,881, entitled “Method and
Apparatus for Transferring Modified Data Efficiently,” filed
Oct. 31, 2012, which are incorporated by reference herein in
its entirety.

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to
data storage systems. More particularly, embodiments of the
invention relate to incremental data backup.

BACKGROUND

Data storage is a critical component for computing. In a
computing device, there is a storage area in the system to store
data for access by the operating system and applications. In a
distributed environment, additional data storage may be a
separate device that the computing device has access to for
regular operations. This kind of data storage is generally
referred to as a primary storage, in contrast with a secondary
storage, where computing devices also have access to but
generally used for backing up. For data protection purposes,
it is important to make regular copies of data from a primary
storage to a secondary storage. While early backup strategies
created complete (full) backups periodically, an alternate
technique is to transfer only the incrementally modified data.
By stitching together a newly modified data with a previous
complete copy on the secondary storage, a new full backup
can be reconstructed.

Typically, when a backup request is received at a primary
storage system, a snapshot of the data to be backed up is
captured and the snapshot is then transmitted from the pri-
mary storage system to a secondary storage system (also
referred to as a target storage system, the terms secondary
storage system, secondary storage, and target storage system
are used interchangeably within the specification), while the
primary storage system is still receiving further writes from a
host. When the primary storage receives write requests from
computing devices, it may write the data to the same locations
that may be involved in the process of getting backed up to a
secondary storage. To ensure the data integrity at such loca-
tions, the primary storage may utilize certain extra operations
such as copy-on-write to copy the data at a storage location to
a corresponding location in the snapshot as part of processing
a write request. Such an operation incurs significant over-
heads.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements.

FIG. 1 is a block diagram illustrating a backup process
according to one embodiment of the invention.

FIG. 2 is a block diagram illustrating data content preser-
vation during an incremental backup process.

15

20

25

40

45

55

60

65

2

FIG. 3A is a block diagram illustrating an incremental
backup process using a first set of embodiments of the inven-
tion at a primary storage.

FIG. 3B is another block diagram illustrating an incremen-
tal backup process using the first set of embodiments of the
invention at a primary storage.

FIG. 4A is a block diagram illustrating an incremental
backup process using a second set of embodiments of the
invention at a primary storage.

FIG. 4B is another block diagram illustrating an incremen-
tal backup process using the second set of embodiments of the
invention at a primary storage.

FIG. 51is a flow diagram illustrating a method of backing up
according to one embodiment of the invention.

FIGS. 6 A-B are diagrams illustrating computer simulation
results comparing embodiments of the inventions and
embodiments of baseline operations without this invention.

FIG. 7 is a block diagram illustrating an incremental
backup process using a third set of embodiments of the inven-
tion at a primary storage.

FIG. 8 is a flow diagram illustrating a method of incremen-
tal backup process using the third set of embodiments of the
invention at a primary storage.

FIG. 9 is a flow diagram illustrating a method according to
the third set of embodiments of the invention.

FIG. 10 is a flow diagram illustrating a method of deter-
mining whether a dirty data block is in or close to a hot region
within a primary storage according to one embodiment of the
invention.

FIG. 11 is a block diagram illustrating a segment storage
engine according to one embodiment of the invention.

DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive of the invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment. A dataset is a collection of data that is
stored in a storage space in a variety of formats. In some
embodiments, a storage space is a sector-based system, where
sectors are the basic storage units and a number of sectors
make up a data block, or blocks, and a number of blocks make
a logical unit (that is identified by a LUN, Logical Unit
Number). A storage space may contain a number of logical
units. A dataset may be a collection of sectors, blocks, logical
units, or a combination thereof. Note the terms “data block”™
and “block” are used interchangeably within the specifica-
tion.

According to some embodiments, a host is a computing
device that is communicatively coupled with a primary stor-
age. Both the host and the primary storage may be commu-
nicatively coupled with a backup application server and a
secondary storage over a network (e.g., the Internet, a storage
network), where the backup application server coordinates

US 9,235,535 Bl

3

backup from the primary storage to the secondary storage.
Backup is a process of copying datasets from one storage
system to another storage system. A backup may be a full
backup that copies an entire dataset from one storage system
to another system or an incremental backup that copies only
changed portion of the dataset. In an alternative embodiment,
primary storage may have functionality to initiate a backup. A
request for a backup of some data blocks is sent from the
backup application server to the primary storage. The primary
storage then establishes a consistent state of the data blocks
(consistent state may also be called point-in-time value, and
the two terms are used interchangeably in this specification).
In one embodiment, this involves capturing a snapshot of the
data blocks. For an incremental backup, the primary storage
then identifies the data blocks that have been changed since a
previous backup. When a sector, a block, or a logical unit has
changed since the previous backup, it is referred to as a
“modified” or “dirty” sector, block, or logical unit, and needs
to be backed up to the secondary storage; other unchanged
blocks are referred as “normal” blocks. For a full backup, all
the data blocks are considered dirty. The blocks from the
snapshot that are dirty are transferred to the secondary storage
over the network. During a period of transferring the identi-
fied dirty blocks, the primary storage, in response to a storage
write (or write, the terms storage write and write are used
interchangeably in this specification) from a host to a block,
may need to preserve the contents in the block if the block is
dirty. In one embodiment, the original contents of the dirty
block is copied to an alternate block and read from the alter-
nate block to transfer the contents to the secondary storage. In
another embodiment, the incoming storage write is redirected
to an alternate block. The primary storage commits the stor-
age write to the block without copying if the block is not dirty.
Since host storage writes to normal blocks do not trigger
preservation, the incremental backup is more efficient than a
system where all host storage writes to blocks trigger dupli-
cation.

According to an embodiment, marking of dirty blocks from
the transfer state back to the normal state is performed after all
dirty blocks have been transferred from the primary storage to
the secondary storage. According to another embodiment,
when a particular dirty block has been transferred from the
primary storage to the secondary storage, that particular dirty
block is marked from the transfer state to the normal state,
while remaining dirty blocks are still being transferred.

In the embodiments above, dirty blocks are transferred in a
sequential logical order predetermined by a primary storage.
Yet according to some embodiments, dirty blocks may be
assigned to a transfer order different from a sequential logical
order to reduce data content preservation and make an incre-
mental backup more efficient. In one embodiment, the pri-
mary storage may assign dirty blocks to a transfer order based
on an access assessment of the dirty blocks, the transfer order
being different from the sequential logical order. In one
embodiment, the primary storage identifies hot regions within
a storage space of the primary storage. When a dirty block is
in or near a hot region (e.g., within a predetermined proxim-
ity), the dirty block has a higher priority in transferring to the
secondary storage. In some embodiments, a hot region may
be determined based on physical closeness of the dirty block
to frequently changed regions of the primary storage, physi-
cal closeness of the dirty block to a number of dirty blocks,
physical closeness of the dirty block to a next write, history of
the dirty block being written, and/or times of the dirty block
being written in a period of time. In other embodiments, the
primary storage may assign the dirty blocks to a transfer order
based on readiness of a stable read resource of the dirty

10

15

20

25

30

35

40

45

50

55

60

65

4

blocks, the importance of the dirty blocks, contents of the
dirty blocks (e.g., metadata of a file system may be transferred
first), and other defined criteria. These criteria may be used
singularly or in combination to reduce data content preserva-
tion triggered by incremental backup. In some embodiment,
transfer of the dirty blocks assigned to a transfer order also
utilizes techniques of the marking blocks with states of trans-
fer and normal as disclosed in the embodiments herein above
to further reduce transfer overheads.

System Configuration

FIG. 1 is a block diagram illustrating a backup process
according to one embodiment of the invention. Referring to
FIG. 1, system 100 includes, but is not limited to, one or more
hosts 101-102 communicatively coupled to one embodiment
of a secondary storage (backup storage system 104), backup
application server 105 and primary storage 180 over network
103. Hosts 101-102 may be any type of hosts such as a server,
a personal computer (e.g., desktops, laptops, and tablets), a
“thin” client, a personal digital assistant (PDA), a Web
enabled system, a gaming device, a media player, or a mobile
phone (e.g., Smartphone), etc. Network 103 may be any type
of network such as a local area network (LAN), a wide area
network (WAN) such as Internet, a corporate intranet, a met-
ropolitan area network (MAN), a storage area network
(SAN), a bus, or a combination thereof, wired and/or wire-
less. Note, while backup storage system 104 is shown in FIG.
1 for illustration purpose, other types of secondary storages
are used according to some embodiments of the invention.
For example, a secondary storage may be a replica of primary
storage 180 or a snapshot repository of primary storage 180.

Backup storage system 104 may include any type of server
or cluster of servers. For example, backup storage system 104
may be a storage server used for any of various different
purposes, such as to provide multiple users with access to
shared data and/or to back up mission critical data. Backup
storage system 104 may be, for example, a file server (e.g., an
appliance used to provide NAS capability), a block-based
storage server (e.g., used to provide SAN capability), a uni-
fied storage device (e.g., one which combines NAS and SAN
capabilities), a nearline storage device, a direct attached stor-
age (DAS) device, a tape backup device, or essentially any
other type of data storage device. Backup storage system 104
may have a distributed architecture, or all of its components
may be integrated into a single unit. Backup storage system
104 may be implemented as part of an archive and/or backup
storage system such as a de-duplication storage system avail-
able from EMC® Corporation of Hopkinton, Mass.

In one embodiment, backup application server 105
includes, but not limited to, a backup engine 106. Backup
application server 105 coordinates with backup storage sys-
tem 104, primary storage 180, and hosts 101-102 to run
various backup operations. Backup engine 106 may perform
both backup and restore functions.

In one embodiment, backup storage system 104 may
include, but is not limited to, deduplication storage engine
107, and one or more storage units 108-109 communicatively
coupled to each other. Storage units 108-109 may be imple-
mented locally (e.g., single node operating environment) or
remotely (e.g., multi-node operating environment) via inter-
connect 120, which may be a bus and/or a network. In one
embodiment, one of the storage units 108-109 operates as an
active storage to receive and store external or fresh user data,
while the other storage unit operates as a target storage unit to
periodically archive data from the active storage unit accord-
ing to an archiving policy or scheme. Storage units 108-109
may be, for example, conventional magnetic disks, optical
disks such as CD-ROM or DVD based storage, magnetic tape

US 9,235,535 Bl

5

storage, magneto-optical (MO) storage media, solid state
disks, flash memory based devices, or any other type of non-
volatile storage devices suitable for storing large volumes of
data. Storage units 108-109 may also be combinations of such
devices. In the case of disk storage media, the storage units
108-109 may be organized into one or more volumes of
Redundant Array of Inexpensive Disks (RAID). Backup files
142 represent files stored in storage units 108. Note that in one
embodiment, backup application server 105 and backup stor-
age system 104 are integrated into one single system.

In response to a data file to be stored in storage units
108-109, optional deduplication storage engine 107 is con-
figured to segment the dataset into multiple segments (also
referred to as data chunks or simply chunks) according to a
variety of segmentation policies or rules. Deduplication stor-
age engine 107 only stores a segment in a storage unit if the
segment has not been previously stored in the storage unit. In
the event that a segment has been previously stored, metadata
stores information enabling the reconstruction of a file using
the previously stored segment. As a result, segments of
datasets are stored in a deduplicated manner, either within
each of storage units 108-109 or across at least some of
storage units 108-109. Datasets stored in the storage units
may be stored in a compressed form (e.g., lossless compres-
sion: Huffman coding, Lempel-Ziv Welch coding; delta
encoding: a reference to a segment plus a difterence; subseg-
menting: a list of subsegments or references to subsegments,
etc.). In one embodiment, different storage units may use
different compression methods (e.g., main or active storage
unit from other storage units, one storage unit from another
storage unit, etc.).

The metadata may be stored in at least some of storage
units 108-109, such that datasets can be accessed independent
of another storage unit. Metadata of each storage unit
includes enough information to provide access to the datasets
it contains. When an active storage unit fails, metadata con-
tained in another storage unit may be utilized to recover the
active storage unit. When one storage unit is unavailable (e.g.,
the storage unit has failed, or is being upgraded, etc.), the
system remains up to provide access to any dataset not stored
in the failed storage unit. When a dataset is deleted, the
metadata associated with the datasets in the system is updated
to reflect that the dataset has been deleted.

In one embodiment, the metadata information includes a
dataset identifier, a storage unit where the segments associ-
ated with the dataset identifier are stored, reconstruction
information for the dataset using the segments, and any other
appropriate metadata information. In one embodiment, a
copy of the metadata is stored on a storage unit for datasets
stored on a storage unit so that datasets that are stored on the
storage unit can be accessed using only the information stored
on the storage unit. In one embodiment, a main set of meta-
data information can be reconstructed by using information
of other storage units associated with the backup storage
system in the event that the main metadata is lost, corrupted,
damaged, etc. Metadata for a storage unit can be recon-
structed using metadata information stored on a main storage
unit or other storage unit (e.g., replica storage unit). Metadata
information further includes index information (e.g., location
information for segments in storage units).

In one embodiment, the backup storage system as shown in
FIG. 1 may be used as a tier of storage in a storage hierarchy
that comprises other tiers of storage. One or more tiers of
storage in this hierarchy may utilize different kinds of storage
devices and/or may be optimized for different characteristics
such as random update performance. Datasets are periodi-
cally moved among the tiers based on data management poli-

10

15

20

25

30

35

40

45

50

55

60

65

6

cies to achieve a cost-effective match to the current storage
requirements of the datasets. For example, a dataset may
initially be stored in a tier of storage that offers high perfor-
mance for reads and writes. As the dataset ages, it may be
moved into a tier of storage according to one embodiment of
the invention. In various embodiments, tiers include different
storage technologies (e.g., tape, hard drives, semiconductor-
based memories, optical drives, etc.), different locations (e.g.,
local computer storage, local network storage, remote net-
work storage, distributed storage, cloud storage, archive stor-
age, vault storage, etc.), or any other appropriate storage for a
tiered data storage system.

Referring back to FIG. 1, backup engine 106 is configured
to back up data from hosts 101-102 and to store the backed up
data in one or more of storage units 108 of backup storage
system 104, where the data may be deduplicated by dedupli-
cation storage engine 107. In this example, a user (e.g., an
administrator) initiates a backup request, directly or through
a backup schedule, of primary storage 180. Note in some
embodiments, the user may request a full backup or an incre-
mental backup, and primary storage 180 decides whether full
datasets or changed datasets only are transferred (e.g., pri-
mary storage 180 may decide to transfer changed datasets
only when the secondary storage has an earlier backup of the
datasets and only changed datasets are needed to fully recon-
struct the datasets at the secondary storage).

Primary storage 180 may include any type of server or
cluster of servers. For example, primary storage 180 may be
a storage server used for any of various different purposes,
such as to provide multiple users with access to shared data
and/or to back up mission critical data. Primary storage 180
may be, for example, a file server (e.g., an appliance used to
provide NAS capability), a block-based storage server (e.g.,
used to provide SAN capability), a unified storage device
(e.g., one which combines NAS and SAN capabilities), a
nearline storage device, a direct attached storage (DAS)
device, or essentially any other type of data storage device.
Primary storage 180 may have a distributed architecture, or
all of its components may be integrated into a single unit.
Primary storage 180 may be implemented as part of a storage
system available from EMC® Corporation of Hopkinton,
Mass.

Primary storage 180 contains datasets 182, which repre-
sent the data stored in the primary storage. Datasets 182 may
be stored across a number of logical units, and each identified
by a logical unit number (LUN). Each logical unit may con-
tain a number of blocks, and each block may contain a number
of sectors. Primary storage 180 also contains data protection
logic 184 that manages both backup and restore processes
within primary storage 180. Primary storage 180 also con-
tains change tracker 186 to track changes of datasets within
the primary storage. In one embodiment, the changes tracked
are the changes of datasets from a previous backup. Primary
storage 180 may also include transfer order determinator 188
that reorders datasets within the primary storage. In one
embodiment, transfer order determinator 188 determines a
transfer order of dirty datasets for backup transfer as dis-
cussed herein below.

Data Preservation During an Incremental Backup

FIG. 2 is a block diagram illustrating data content preser-
vation during an incremental backup process. Trace timeline
280 illustrates timeline of backups of dataset 182 of primary
storage 180 to a secondary storage (e.g., backup storage sys-
tem 104) of FIG. 1. As shown, backups are periodically per-
formed, and backup intervals 251 and 252 are two examples.
Note backup intervals 251 and 252 do not need to be equal and
backup intervals may change from time to time. A backup

US 9,235,535 Bl

7

request triggered dataset transfer starts at the beginning of a
backup interval and ends when the requested dataset has been
transmitted from a primary storage to a backup storage sys-
tem. Transfer period 262 illustrates the duration of a transfer
period for blocks dirtied during backup interval 251. Transfer
period 262 is shorter than backup interval 252 so that dataset
transfer can be completed within a backup interval.

As primary storage 180 is online during backup intervals, a
list of write and read operations to primary storage 180 is
shown, where a “w” represents a write input/output (I/O)
operation and an “r” represents a read /O operation by a host
(e.g.,host102in FIG. 1). While FIG. 2 shows that “w” and “r”
occur at a roughly equal interval, this is for simplicity of
illustration. Read I/O and write I/O may occur at a non-even
pace. A write affects one or more consecutive sectors that may
span one or more blocks. FIG. 2 shows sectors and blocks as
a part of datasets of logical volume 270. In this example, a
block contains 3 sectors. In an incremental transfer of logical
volume 270, only changed datasets (“dirty” datasets) need to
be transferred to a backup storage. A changed sector or a
block is blacked out to indicate they have been changed and
thus need to be transferred. Blocks 201, 202, 210, and 216 are
changed blocks. Block 208 is not changed from a previous
backup. Note “w” at reference 222 writes to a sector in block
201 that has been written already, and the second write does
not change the status of the sector, which already indicates
being “dirty.” Also note “w” at reference 226 writes to block
208 that is unchanged from a previous backup, and “w” at
reference 228 writes to block 210 that has been changed from
a previous backup. Yet both writes at references 226 and 228
may cause copy-on-write. The agnostic copy-on-write causes
transfer overheads that are more than necessary and embodi-
ments of this invention will address the issue as discussed
herein below.

Copy-on-write is one way of duplicating data so that the
data integrity of the dirty blocks to be transferred can be
maintained during a concurrent read and write operation. For
dirty block transfer, a snapshot of the identified dirty blocks is
captured to obtain a consistent state of the dirty blocks. The
snapshot of the identified dirty blocks is then transferred from
the primary storage to the secondary storage. With copy-on-
write during data transfer, a write of a dataset from a host
triggers a copy of the dataset to a different location (e.g., at a
snapshot space) so that the write at the original location does
not affect the transferred data. For example, referring to FIG.
2, upon the write [/O at reference 228, the data in block 210 is
copied to a new block in the snapshot space first and then the
new data of write 1/O at reference 228 is written to the first
sector of block 210. Another way to keep data integrity during
data transfer is redirect-on-write, where a write of a data
block is appended to a log or some other alternate location
instead of writing to the original location of the dataset.
Redirect-on-write causes the new dataset to be written in the
alternate location while copy-on-write causes the old dataset
to be written to the snapshot space and the new dataset is
written to the same location of the old dataset. Both copy-on-
write and redirect-on-write take an extra write 1/O, and they
take storage spaces and affect the performance characteristics
of'the primary storage. In this example, while it is understand-
able that write at reference 228 to block 210 triggers a copy-
on-write as the write happens during transferring of changed
block 210, write at reference 226 should not need to trigger a
copy-on-write as block 208 will not be transterred from pri-
mary storage 180 to backup storage system 104 during trans-
fer period 262.

A First Set of Embodiments of the Inventions

FIG. 3A is a block diagram illustrating an incremental
backup process using a first set of embodiments of the inven-

10

15

20

25

35

40

45

55

60

65

8

tion at a primary storage. Task boxes 1 to 5 illustrate the order
in which operations are performed according to one embodi-
ment of the invention. System 300 is similar to system 100 in
FIG. 1 and the same or similar references indicate elements or
components having the same or similar functionalities. The
connectivity between various entities and modules within
entities are omitted in FIG. 3A to leave space to discuss the
incremental backup process more clearly. The process starts
at backup application server 305 with a request for a backup
of host 302. The backup request may be for an incremental
backup in some embodiment, and the backup request may be
for a full backup in another embodiment. Primary storage 380
receives the request. In one embodiment, the request comes
from a user directly through a user interface. In another
embodiment, the request comes from secondary storage sys-
tem 304 or primary storage 380 itself based on a backup
schedule. After receiving the request, primary storage 380
decides to initiate an incremental backup (for example,
through data protection logic 184 of FIG. 1). Primary storage
may decide to initiate an incremental backup even if the
backup request does not explicitly requests so for transfer
efficiency purposes. At task box 2, a snapshot is captured to
establish a consistent state of datasets within primary storage
380. The datasets are represented by datasets 382. The result-
ing snapshot is saved at snapshot space 388.

At task box 3, dirty blocks within the snapshot are identi-
fied. In some embodiments, identifying dirty blocks is not a
separate process; rather, it is a part of processing host write
requests by the primary storage. In other words, identification
of dirty blocks may happen prior to or concurrently with a
backup request is received at primary storage 380. As dis-
cussed herein above, dirty blocks are the blocks changed
since a previous backup, and they are the ones that need to be
transferred to secondary storage system 304. The identifica-
tion of dirty blocks may be achieved through a variety of
ways. For example, a variety of data structures such as a bit
vector or a table (e.g., hash table, tree, or array) may be used
to track dirty blocks within primary storage 380. A change
tracker like change tracker 186 may be used to store the status
of blocks within primary storage 380 by implementing the
aforementioned variety of data structures. In one embodi-
ment, two data structures are used to store the status of blocks.
One data structure stores the status of block changes before
the starting of transferring of blocks (referred to as a past
change tracker, or PCT), and the other stores the status of
block changes at the current backup interval (referred to as a
current change tracker, or CCT). When a block within pri-
mary storage 380 has been changed since a previous backup
but before the starting of transferring of blocks, the status of
the block will be labeled with “transfer” in the PCT, indicat-
ing that the block needs to be transferred to secondary storage
304. If a block has not changed since a previous backup (e.g.,
the last backup) and before the starting of transferring of
blocks, the status of the block will be labeled with “normal”
in the PCT. By checking the status of all the blocks in the PCT,
dirty blocks are identified at task box 3. Note that at the
starting of transferring in the current backup interval, the
status of CCT for all blocks are “normal” as no host write has
occurred yet (thus no change is recorded). Then at task box 4,
dirty blocks are transferred to secondary storage system 304.
After transfer starts and before transfer completes, host 302
may continue writing to primary storage 380. Since the write
happens after transfer starts at task box 4, “4+” is used to
denote post transfer initiation actions. At task box 4+, a write
to a dirty block (which is labeled with “transfer”) will trigger
a data content preservation action of the dirty block to snap-
shot space 388 while the block is written to Dataset 382. A

US 9,235,535 Bl

9

write to an unchanged block (which is labeled with “normal”)
does not trigger a data content preservation action according
to one embodiment, since such an unchanged block will not
be transferred to the secondary storage. Note the removal of a
data content preservation action for unchanged blocks difter-
entiates the embodiment of a backup process illustrated in
FIG. 3 from an agnostic copy-on-write process illustrated at
references 226 and 228 in FIG. 2. In one embodiment, the data
content preservation action is performed via a copy on write
operation, and in another embodiment, the data content pres-
ervation action is performed via a redirect on write operation.
Importantly, a host write to a “normal” block indicted in the
CCT will cause the status of the block changes to “transfer” as
CCT tracks current changes of blocks. Then at task box 5, the
data transfer completes. After the data transfer completes, the
label on all “transferred” blocks in the PCT are reset to “nor-
mal” At the same time, all changes to a block during the
current backup interval will trigger a labeling of the block to
“transfer” in the CCT. We name this type of incremental
backup as “dirty dataset duplication” as only dirty dataset
triggers duplication during incremental backup. Note, if the
current backup interval is backup interval N, at a backup
immediately follows the current backup (referred to as
backup interval N+1), the PCT of backup interval N will
become a current change tracker for backup interval N+1 as it
has been reset to “normal” after the transfer period at backup
N. The former PCT of backup interval N now can be used to
track changes during backup interval of backup N+1. The
CCT for backup interval N switches its role and becomes a
PCT of backup interval N+1 as it has records of all changes
during the backup interval of backup N+1. The roles between
the two trackers alternate in the following backup intervals.

Note the embodiment uses blocks to illustrate the operation
of incremental backup. The invention is not so limited. For
example, the process can be operated at a sector level, where
changes of sectors from a previous backup are tracked at a
change tracker such as change tracker 186 and a data content
preservation action happens only when a host writes to a dirty
sector during a transfer period. Similar to operation on
blocks, after the data transfer completes, the labels on all
sectors are reset to “normal” in a PCT for all sectors and the
label of a sector in a CCT is changed to “transfer” once the
sector is written.

FIG. 3B is another block diagram illustrating an incremen-
tal backup process using the first set of embodiments of the
invention at a primary storage, in which the primary storage
system copies dirty blocks to the snapshot space the first time
when a host writes to them while they are getting transferred.
FIG. 3B focuses on illustrating changes of status labels of
blocks ina PCT and a CCT associated with a primary storage.
At time TO, incremental backup triggered block transfer
starts. At time T0, block 352 is labeled with “transfer” (“T”),
block 354 is labeled with “normal” (“N”), and block 356 is
labeled with “transfer” in the PCT. The status for all blocks in
the CCT is “normal” at time T0 (not shown). At time T1,
block 352 is getting transferred to a secondary storage and a
host requests a write to block 354. Because block 354 is
labeled with “normal” in the PCT, the write does not trigger a
data content preservation action of block 354. However, the
write to block 354 triggers the CCT status of block 354
changes from “normal” to “transfer” (not shown). Then at
time T2, block 352 has been transferred already and block 356
is getting transferred to the secondary storage and a host
requests write to block 352. Since block 352 is labeled with
“transfer” in the PCT, the write triggers a data content pres-
ervation action of block 352 to a block in the snapshot that
corresponds to block 352 (not shown); any subsequent writes

30

40

45

55

10

to block 352 do not cause data content preservation actions.
At the same time, the write to block 352 triggers the CCT of
block 352 changes from “normal” to “transfer” (not shown).
At time T3, transfer of block 356 completes, and since that is
the last dirty block, the incremental backup is done, and the
labels of transfer state should reset to “normal.” Thus, labels
ofblocks 352 and 356 reset to “normal” in the PCT as shown.
For CCT, since blocks 352 and 354 have been written during
the transfer period, the labels of blocks 352 and 354 are
changed to “transfer” as shown. Afterward, at time T4, a host
writes to block 354, and the write does not trigger block 354
to change label in the CCT since it has been in “transfer” state
in the CCT already. At time T4, the PCT remains all “normal”
for all blocks. As discussed herein above, the PCT will
become a CCT in the next backup interval and the status of
blocks in the CCT of the next backup interval may be changed
after the next backup interval starts and host write requests
come in. Because the write at time T1 does not trigger a data
content preservation action, the performance characteristics
of the primary storage increase as one less /O operation and
less storage space are required in this example.

In another embodiment, the labeling can be done at sector
level. In that case, all 9 sectors of blocks 352-356 in FIG. 3B
have individual “transfer” and “normal” labels, which takes
more processing resource to manage. At the same time, the
process may save more data content preservation actions as
some blocks have only a portion being dirty (e.g., block 356
has only one dirty sector), and writes to normal sectors do not
trigger data content preservation actions, thus making data
content preservation decision at sector level may further
reduce data content preservation actions. Note that the num-
ber of sectors included in a block may be implementation
specific; more or fewer sectors may be included in a block
dependent upon the specific storage configuration. The size of
a sector, which is typically 512 bytes, may also be implemen-
tation specific. Different storage systems may have different
sector sizes. In addition, tracking at a block level vs. a sector
level may also be implementation specific or user config-
urable, dependent upon the processing resources available in
the system. For example, if tracking is performed at the sector
level, more processing resources (e.g., memory) may be
required to keep track of the sectors compared with the block
level tracking. However, sector level tracking may cause
fewer duplicated writes to the snapshot, which reduces more
overhead. A hybrid mode having both sector level tracking
and block level tracking may also be implemented dependent
upon the storage characteristics or configurations. For
example, tracking ofa “hot” region (e.g., frequently accessed
region) of the primary storage may be conducted at a sector
level.

A Second Set of Embodiments of the Invention

FIG. 4A is a block diagram illustrating an incremental
backup process using a second set of embodiments of the
invention at a primary storage. Task boxes 1 to 4 illustrate the
order in which operations are performed according to one
embodiment of the invention. System 400 is similar to system
100 in FIG. 1 and the same or similar references indicate
elements or components having the same or similar function-
alities. The connectivity between various entities and mod-
ules within entities are omitted in FIG. 4A to leave space to
discuss the incremental backup process more clearly. The
process starts at backup application server 305 with a request
for a backup of host 302. The backup request may be for an
incremental backup in some embodiment, and the backup
request may be for a full backup in another embodiment.

US 9,235,535 Bl

11

Primary storage 380 receives the request. In one embodiment,
the request comes from a user directly through a user inter-
face. In another embodiment, the request comes from second-
ary storage 304 or primary storage 380 itself based on a
backup schedule. After receiving the request, primary storage
380 decides to initiate an incremental backup (for example,
through data protection logic 184 of FIG. 1). Primary storage
may decide so even if the backup request does not explicitly
requests for an incremental backup. At task box 2, a snapshot
is captured to establish a consistent state of datasets within
primary storage 380. The datasets are represented by datasets
382. The resulting snapshot is saved at snapshot space 388.
At task box 3, dirty blocks within the snapshots are iden-
tified. Similar to the embodiments of dirty dataset duplica-
tion, identifying dirty blocks is not a separate process in some
embodiments; rather, it is a part of processing host write
requests by the primary storage. In other words, identification
of dirty blocks may happen prior to or concurrently with a
backup request is received at primary storage 380. The iden-
tification of dirty blocks may be achieved through a variety of
ways. For example, a variety of data structures such as a bit
vector or a table (e.g., hash table, tree, or array) may be used
to track dirty blocks within primary storage 380. A change
tracker like change tracker 186 may be used to store the status
of blocks within primary storage 380 by implementing the
aforementioned variety of data structures. Similar to the
embodiments of dirty dataset duplication, in some embodi-
ments, two data structures may be used to store the status of
blocks: A past change tracker (PCT) stores the status of
blocks before the starting of transferring of blocks and a
current change track (CCT) stores the status of blocks at the
present backup interval. When a block within primary storage
380 has been changed since a previous backup (e.g., the last
backup) but before the starting of transferring of blocks, the
status of the block will be labeled with “transfer” in the PCT,
indicating that the block needs to be transferred to secondary
storage 304. If a block has not changed since a previous
backup and before the starting of transferring of blocks, the
status of the block will be labeled with “normal” in the PCT.
By checking the status of all the blocks, dirty blocks are
identified at task box 3. Note that at the starting of transfer-
ring, the status of CCT for all blocks are “normal” as no host
write has occurred yet (thus no change has been recorded).
Onward to task box 4, dirty blocks are transferred to sec-
ondary storage 304. After transfer starts and before transfer
completes, host 302 may continue writing to primary storage
380. Since the write happens after transfer starts at task box 4,
“4+” and “4'+” are used to denote post transfer initiation
actions. Task boxes 4+ and 4'+ may happen in a not-fixed
order. Sometimes task box 4+ happens earlier than task box
4'+ yet the opposite can be true too, because task box 4+ is
initiated externally based on a host request. At task box 4+, a
write to a yet-to-transfer dirty block (which is labeled with
“transfer” in the PCT) will trigger a data content preservation
action to snapshot space 388 while the block is written to
Dataset 382. A write to an unchanged block or a transferred
dirty block (both the unchanged and the transferred dirty
blocks are labeled with “normal” in the PCT) does not trigger
a data content preservation action according to one embodi-
ment, since an unchanged block or a transferred dirty block
will not be transferred to the secondary storage. Note the
removal of a data content preservation action for unchanged
blocks or transferred blocks differentiates the embodiment of
abackup process illustrated in FIG. 5 from an agnostic copy-
on-write process illustrated at references 226 and 228 in FIG.
2 and embodiments of dirty dataset duplication illustrated in
FIG. 3 where transferred blocks still trigger data content

25

40

45

55

12

preservation actions. In one embodiment, the data content
preservation action is performed via a copy on write opera-
tion, and in another embodiment, the data content preserva-
tion action is performed via a redirect on write operation. At
task box 4'+, after a dirty block is transferred, the status of the
block will be labeled with “normal” in the PCT. The statuses
of dirty blocks in the PCT change throughout the transfer
period—gradually all change from “transfer” to “normal.” At
the same time, host writes to the blocks will trigger a labeling
of'the blocks to “transfer” in the CCT. That is, a block labeled
with “normal” in the CCT (which is for all blocks at the
beginning of the backup interval) will be relabeled with
“transfer” once there is a write to the block, whether the write
is within the transfer period or not. This type of incremental
backup is referred to as in-time dirty dataset duplication as
only dirty dataset in the time before transferring triggers
duplication during an incremental backup. Note, if the current
backup interval is backup interval N, at a backup immediately
follows the current backup (referred to as backup interval
N+1), the PCT of backup interval N will become a current
change tracker for backup interval N+1 as it has been reset to
“normal” after the transfer period at backup N. The former
PCT of backup interval N now can be used to track changes
during backup interval of backup N+1. The CCT for backup
interval N switches its role and becomes a PCT of backup
interval N+1 as it has records of all changes during the backup
interval of backup N+1. The roles between the two trackers
alternate in the following backup intervals.

Note the embodiment uses blocks to illustrate the operation
of incremental backup. The invention is not so limited. For
example, the process can be operated at sector level, where
changes of sectors from a previous backup are tracked and a
data content preservation action happens only when a host
writes to a yet-to-transfer dirty sector during a transtfer period.
Similar to operation on blocks, the labels on the sectors are
reset to “normal” in a PCT for all sectors gradually through-
out a transfer period.

FIG. 4B is another block diagram illustrating an incremen-
tal backup process using the second set of embodiments of the
invention at a primary storage. FIG. 4B focuses on illustrating
changes of status labels of blocks in a PCT and a CCT asso-
ciated with a primary storage. Attime T0, incremental backup
triggered block transfer starts. At time TO0, block 352 is
labeled with “transfer” (“T”), block 354 is labeled with “nor-
mal” (“N”), and block 356 is labeled with “transfer” at the
PCT. The status for all blocks in the CCT is “normal” at time
TO (not shown). At time T1, block 352 is transferring to a
secondary storage and a host requests a write to block 354.
Because block 354 is labeled with “normal” in the PCT, the
write does not trigger a data content preservation action of
block 354. However, the write to block 354 triggers the CCT
status of block 354 changes from “normal” to “transfer” (not
shown). Then at time T2, block 352 has been transferred
already and block 356 is getting transferred to the secondary
storage system and a host requests write to block 352. After
block 352 finishes transferring to a secondary storage, the
status ofblock 352 changes from “transfer” to “normal” in the
PCT; therefore, the write does not trigger a data content
preservation action of block 352. At the same time, the write
to block 352 triggers the CCT of block 352 changes from
“normal” to “transfer” (not shown). At time T3, transfer of
block 356 completes, and the status of block 356 changes
from “transfer” to “normal” in the PCT, and the incremental
backup is done. For CCT, since blocks 352 and 354 have been
written during the transfer period, the labels of blocks 352 and
354 are changed to “transfer” as shown. At time T4, a host
writes to block 354, and the write does not trigger block 354

US 9,235,535 Bl

13

to change label in the CCT since it has been in “transfer” state
inthe CCT already. At time T4, the PCT for all blocks remains
“normal.” As discussed herein above, the PCT will become a
CCT in the next backup interval and the status of blocks in the
new CCT may be changed after the next backup interval starts
and host write requests come in. Because the writes at both
time T1 and time T2 do not trigger a data content preservation
action, the performance characteristics of the primary storage
increase as two less I/O operation and less storage space are
required.

In another embodiment, the labeling can be done by at a
sector level, in which case, all 9 sectors of blocks 352-356
have individual “transfer” and “normal” labels, which take
more processing resource to manage. At the same, the process
may save more data content preservation actions as some
blocks have only a portion being dirty (e.g., block 356 has
only one dirty sector), and writes to “normal” sectors and
transferred sectors do not trigger data content preservation
actions, thus making data content preservation decision at a
sector level may further reduce data content preservation
actions.

Embodiments of Backup Methods Viewed from Primary
Storage

FIG. 5 is a flow diagram illustrating a method of backing up
according to one embodiment of the invention. Method 500
may be implemented on a primary storage such as primary
storage 180. At reference 502, the method starts with captur-
ing a snapshot of a plurality of data blocks in response to a
request at a primary storage for a backup of the plurality of
data blocks. The snapshot represents a consistent state of the
plurality of data blocks. In one embodiment, the request
comes from a user directly through a user interface. In another
embodiment, the request comes from a backup application
server, a secondary storage system or the primary storage
itself based on a backup schedule. At reference 504, a set of
data blocks of the captured snapshot are identified to be
copied to a secondary storage. At reference 506, the identified
set of data blocks are being transferred to the secondary
storage. The identified set of data blocks are transferred to a
secondary storage like backup storage system 104 in FIG. 1.
In one embodiment, the backup storage system is a dedupli-
cating storage system. After transfer starts, a host may con-
tinue writing to the blocks within the primary storage. At
reference 508, in response to receiving data to be written to a
first data block at the primary storage during the transfer,
preserving the current contents of the first data block if the
first data block is in the identified set of data blocks. Then at
reference 510, the received data is committed to the first data
block. Optionally, a data block from the set of data blocks is
removed from the set of data blocks after the block has been
copied to the secondary storage.

In one embodiment, the identified set of data blocks at
reference 504 includes all the data blocks of the captured
snapshots, thus the backup is a full backup. In another
embodiment, the identified set of data blocks at reference 504
is a set of data blocks that have been changed since a previous
backup (e.g., the last backup), thus the backup is an incre-
mental backup. The changed data blocks are referred to as
dirty data blocks as discussed herein above. The dirty data
blocks may be identified in a variety of ways. In one embodi-
ment, a variety of data structures such as a bit vector or a table
(e.g., hashtable, tree, or array) may be used to track dirty data
blocks within the primary storage. In one embodiment, two
change trackers can be implemented, one stores block sta-
tuses based on changes prior to the starting of block transfer
of'a backup interval and the other stores block statuses based
on changes after the starting of block transfer and during the

10

15

20

25

30

35

40

45

50

55

60

65

14

backup interval. In another embodiment, a comparison such
as a “diff” operation of the datasets against a consistent state
of the datasets associated with a previous backup can deter-
mine the change since the last backup. A change tracker
module such as change tracker 186 in FIG. 1 may be utilized
to identity the dirty datasets. The change tracker may label a
data block either with “transfer” or “normal” In some
embodiments, marking of dirty data blocks from the transfer
state to the normal state is performed after all dirty data blocks
have been transferred from the primary storage to the second-
ary storage, and these kinds of embodiments use the first set
of embodiments of the invention as we discussed herein
above. In some other embodiments, when a particular dirty
data block has been transferred from the primary storage to
the secondary storage, that particular dirty data block is
marked from the transfer state to the normal state, while
remaining dirty data blocks are still being transferred. These
kinds of embodiments use the second set of embodiment of
the inventions as we have discussed herein above. Note each
block contains multiple sectors, and marking can be done at a
sector level. When marking is done at a sector level, a primary
storage needs to track the states of sectors, and that takes more
computing resource and storage space, but one of the benefits
is that data content preservation actions may be reduced as
some dirty blocks have only a portion of the sectors within it
changed, and writes to the unchanged sectors will not trigger
data content preservation actions.

In one embodiment, preserving the current contents of the
first data block at the primary storage during transfer at ref-
erence 508 includes copying the current contents of the first
data block to an alternate data block in the primary storage.
For example, the alternate data block may be at a snapshot
space of the primary storage. The operation may be per-
formed by the copy-on-write action discussed herein above.
In another embodiment, the preservation at reference 508
includes writing the received data to an alternate data block in
the primary storage. For example, the alternate data block
may be appended to a log. The operation may be performed
by the redirect-on-write action discussed herein above.

Note that both the first and second sets of embodiments of
the invention can also be used when the secondary storage is
not a backup storage system. For example, a primary storage
may use embodiments of the invention to provide replica of
the primary storage at a secondary storage. For another
example, the secondary storage may be used to provide snap-
shot repositories of a primary storage. For another example,
the secondary storage may be used to provide archival stor-
age. In addition, the secondary storage may be used to make
secondary copies of data, e.g., cloning a dataset to perform
test and development. In each embodiment, the invention
reduces overhead writes and thus improves efficiency of data
transfer.

FIGS. 6 A-B are diagrams illustrating computer simulation
results comparing embodiments of the inventions and
embodiments of baseline operations without this invention.
FIG. 6 A shows computer simulation results of percentages of
volume capacity of copy-on-write. The “baseline” results are
the results for operations without implementing any of the
embodiments disclosed herein above, i.e., both normal and
dirty datasets cause copy-on-write. The “dirty” results are the
results for operations implementing the first set of embodi-
ments of the invention at a block level, and “dirty+time” are
the results for operations implementing the second set of
embodiments of the invention at a block level. The computer
simulation shows that in all backup intervals (from 15 min-
utes to 12 hours) and different block sizes (512 bytes and 1M
bytes), the second set (“dirty+time”) causes less copy-on-

US 9,235,535 Bl

15

write than the first set (“dirty”), and the first set causes less
copy-on-write than baseline operations (“baseline”). FIG. 6B
shows computer simulation results of percentages of host
write causing copy-on-write. For baseline operations, the per-
centages trend down as backup intervals increases, while the
percentages for the first set (“dirty”) and the second set
(“dirty+time”) trend up initially and remains at roughly con-
stant levels. The percentages of host write causing copy-on-
write for the first set and the second set are both at much lower
than the percentages for baselines at different sector sizes
(512 bytes and 1M bytes).

A Third Set of Embodiments of the Invention

FIG. 7 is a block diagram illustrating an incremental
backup process using a third set of embodiments of the inven-
tion at a primary storage. The first and second sets of embodi-
ments of the invention do not change a sequential logical
order of dirty datasets in the primary storage during dataset
transfer. The sequential logical orders of dirty data blocks are
generally provided by primary storage, and they may be
based on logical address, physical address, or any other fixed
order. When the dirty data blocks are assigned to a transfer
order different from the sequential logical order based on, for
example, an access assessment of the dirty datasets, further
saving on input/output operations may be achieved and less
storage space may be needed.

Task boxes 1 to 5 illustrate the order in which operations
are performed according to one embodiment of the invention.
System 700 is similar to system 300 in FIG. 3A and the same
or similar references indicate elements or components having
the same or similar functionalities. The connectivity between
various entities and modules within entities are omitted in
FIG. 7 to leave space to discuss the incremental backup pro-
cess more clearly. The process starts at backup application
server 305 with a request for a backup of host 302. Primary
storage 380 receives the request. In one embodiment, the
request comes from a user directly through a user interface. In
another embodiment, the request comes from secondary stor-
age 304 or primary storage 380 itself based on a backup
schedule. Note in some embodiments, the user may request a
full backup or an incremental backup, and primary storage
380 decides whether full datasets or changed datasets only are
transferred (e.g., primary storage 380 may decide to transfer
changed datasets only when the secondary storage has an
earlier backup of the datasets and only changed datasets are
needed to fully reconstruct the datasets at the secondary stor-
age). At task box 2, a snapshot is captured to get a consistent
state of data blocks of the datasets within primary storage
380. The data blocks are represented by datasets 382. The
resulting snapshot is saved at snapshot space 388. Note that
taking snapshot is not a mandatory step prior to assigning a
transfer order of data blocks, the data blocks can be assigned
to a transfer order different from a sequential logical order
without taking a snapshot. At task box 3, dirty data blocks
within the snapshots are identified. The identification of dirty
data blocks may be achieved through a variety of ways. For
example, a variety of data structures such as a bit vector or a
table (e.g., hash table, tree, or array) may be used to track dirty
data blocks within primary storage 380. A change tracker like
change tracker 186 may be used to store the status of datasets
within primary storage 380. When a data block with primary
storage 380 has been changed since a previous backup, the
status of the data block will be labeled with “transfer,” indi-
cating that the data block needs to be transferred to secondary
storage 304. If a data block has not been changed since a
previous backup, the status of the data block will be labeled

10

15

20

25

30

35

40

45

50

55

60

65

16

with “normal.” By checking the status of all the data blocks,
dirty data blocks are identified at task box 3. Then at task box
4, a transfer order of the dirty data blocks different from a
sequential logical order of the primary storage is determined
based on an access assessment of the dirty data blocks. Attask
box 5, snapshot associated with the dirty datasets are trans-
ferred according to the determined transfer order to second-
ary storage 304. Note during dirty data block transfer, the
primary storage may still use the first and second set of
embodiments of the invention to further reduce data content
preservation actions. In other words, the transfer order deter-
mination (the third set of embodiments of the invention) may
be used in combination of the first or the second set of
embodiments of the invention for backup. In addition, not
only dirty blocks, but also dirty sectors and logical units can
be determined to be transferred in a transfer order different
from a logical sequential order of the primary storage accord-
ing to system 700. In one embodiment, secondary storage 304
is a backup storage system. In other embodiment, secondary
storage 304 may be a replica of primary storage 380 or snap-
shot repository of primary storage 380, or other types of
secondary storages.

FIG. 8 is a flow diagram illustrating a method of backup
process using the third set of embodiments of the invention at
a primary storage. Method 800 may be implemented on a
primary storage such as primary storage 180. At reference
802, the method starts with receiving a request for a backup of
anumber of data blocks at a primary storage. In one embodi-
ment, the request comes from a user directly through a user
interface. In another embodiment, the request comes from a
backup application server, a secondary storage or the primary
storage itself based on a backup schedule. Then at reference
804, the method determines a transfer order of dirty data
blocks based on an access pattern of the dirty data blocks. The
dirty blocks are data blocks that have been changed from a
previous backup (e.g., the last backup). The dirty data blocks
may be identified in a variety of ways. In one embodiment, a
variety of data structures such as a bit vector or a table (e.g.,
hash table, tree, or array) may be used to track dirty data
blocks within the primary storage. In another embodiment, a
comparison such as a “diff” operation of the data blocks
against a consistent state of the data blocks associated with a
previous backup can determine the change since the last
backup. A change tracker module such as change tracker 186
in FIG. 1 may be utilized to identify the dirty data blocks. The
change tracker may label a data block either with “transfer,”
which means that the data block has been changed since a
previous backup and thus needs to be transferred; or the
change tracker may label the data block with “normal,” which
means that the data block has not been changed thus no
transfer is required. The determined transfer order at refer-
ence 804 is different from a sequential logical order of the
dirty data blocks determined by the primary storage. The dirty
data blocks are then transferred to a secondary storage system
such as backup storage system 104 in FIG. 1 in the deter-
mined transfer order at reference 808. In one embodiment, the
secondary storage system is a deduplicating storage system.
In some embodiment, a consistent state of the reordered dirty
data blocks is established by capturing a snapshot of the dirty
data blocks, and the snapshot is transferred to the secondary
storage system. In some embodiment, after transfer starts, the
primary storage may use the first and second sets of embodi-
ments of the invention discussed herein above to further
reduce transfer overhead.

FIG. 9 is a flow diagram illustrating a method according to
the third set of embodiments of the invention. Method 900
may be implemented on a primary storage such as primary

US 9,235,535 Bl

17

storage 180, and more specifically at transfer order determi-
nator module 188, which may be implemented as processing
logic in software, hardware, or a combination thereof. The
method starts at reference 902 where a transfer order deter-
mination request is received with dirty data blocks being
specified. A dirty data block is selected at reference 904. Then
a determination is made about whether the dirty data block is
in or close to a hot region at reference 908. If the dirty data
block is in or close to a hot region, the dirty data block is put
in a higher order for transfer at reference 924, otherwise
optionally the method proceeds to the next determination.
The determination of a dirty data block being in or close to a
hot region will be discussed in more detail herein below in
connection with FIG. 10.

Atreference 910, the determination is whether a stable read
resource is ready for the dirty data block. The readiness for
transfer may be determined by read resources within the
primary storage. For example, a logical unit may span mul-
tiple devices such as hard drives in a RAID configuration. If
a device is busy, a read may take longer than a different hard
drive that is less busy. Data blocks can be ordered to balance
read operations and minimize wait times. Data block transfers
may be handled in parallel by reading multiple devices simul-
taneously and transferring whatever data block is retrieved
first. Read time can vary based on device characteristics. In
general, FLASH devices are faster than SAS (serial attached
SCSI (small computer system interface)) drives, which are
faster than SATA (serial ATA (AT Attached) drives, which are
faster than tape. Determining transfer order of data blocks can
inter-mix reads to each device based on expected response
time. In addition, dirty data blocks may exist on devices that
have different protection categories, and it is important to
transfer dirty data blocks on less-stable storage before dirty
data blocks on more-stable storage. As an example, in order
from least stable to most stable, read resources are RAM,
NVRAM, and hard drive. When a stable read resource is
ready for the dirty data block, the dirty data block is put in a
higher order for transfer at reference 924; a less stable read
resource being ready for the dirty data block may result in the
dirty data block in a lower order but still higher than the
current order of the dirty data block, and the data block may
be kept in the current order when neither is ready.

Optionally the method may continue and determine the
importance of the dirty data block at reference 912. The
importance of a dirty data block may be specified through
metadata provided by a system administrator. One example is
that the administrator knows that certain data blocks are
devoted to file system free block maps and must be protected
frequently, thus if dirty data blocks are one of the certain data
blocks, those dirty data blocks may be given a higher order in
transfer. In addition, the importance of dirty data blocks may
be based on the frequency of reads of the dirty data blocks
besides the frequency of writes of the dirty data blocks. A
frequently read data block is more important to transfer than
a less frequently read data blocks, thus a frequently read dirty
data block should be put in a higher order to transfer than a
less frequently read dirty data blocks. If the dirty data block is
not important, then at reference 916, the method determines
the transfer order of the data block, and the method go back to
reference 904 to select another data block. The method iter-
ates until all dirty data blocks are processed through the
method.

Note that determining a transfer order may be based on
logical units as well as sectors and blocks. For example, a
logical unit could be on a lightly loaded hard drive that can be
transferred more efficiently than a logical unit on a heavily
loaded hard drive, thus the former logical unit should be

10

15

20

25

30

35

40

45

50

55

60

65

18

transferred first. For another example, one logical unit may be
devoted to storing customer orders, which should be pro-
tected with higher priority than a logical unit devoted to
temporary scratch space.

Note that the references 908-912 in combination is
grouped as access assessment reference 920. Access assess-
ment may include one or more blocks of references 908-912
depending on configuration of a primary storage, the need to
determining transfer order of dirty data blocks, available
resources, and other factors. In addition, the order of refer-
ences 908-912 are for illustration only and other orders are
possible to implement method 900 as disclosed.

FIG. 10 is a flow diagram illustrating a method of deter-
mining whether a dirty data block is in or close to a hot region
within a primary storage according to one embodiment of the
invention. Method 1000 may be implemented on a primary
storage such as primary storage 180, and more specifically at
transfer order determinator 188, which may be implemented
as processing logic in software, hardware, or a combination
thereof. The determination starts at reference 1002, and the
method determines whether or not a selected dirty data block
is within or physically close to a region of frequently updated
metadata. Metadata for a file system or a database is updated
more frequently than other data blocks, thus they should be
put in a high order in transfer when they are dirty. If the dirty
data block is in a frequently updated metadata region, the
method determines that the dirty data block is in a hot region
at reference 1016. As illustrated in FIG. 9, a dirty data block
in a hot region may be put in a higher order in transferring
during a backup period. The method then determines whether
or not the dirty data block is physically close to a number of
dirty data blocks at reference 1004. When a dirty data block is
physically closed to other dirty data blocks, since all the dirty
data blocks need to be transferred, it may be more efficient to
put all the closely situated dirty data blocks together while
transferring, thus the method determines that the dirty data
block is in a hot region at reference 1016.

The method determines whether or not the dirty data block
is physically close to being written at reference 1006. The
method prioritizes a dirty data block that is ahead of applica-
tion I/O. For example, consider application 1/O to a block 20.
A primary storage should prioritize transfer of block 21 and
greater with a higher priority than block 20 and lower. The
rationale is that many applications have sequential write pat-
terns and will tend to write to consecutively increasing blocks
in the near future, thus block 21 and higher are close to being
written and need to be transferred in a high order. The method
then determines whether or not the dirty data block has been
written recently at reference 1008. A data block that is written
recently may need to be transferred with a higher priority
because it is likely to be written in the near future. This is a
version of temporal hotness. An opposite decision may also
be made based on the rationale that a block written farther in
the past is more stable and thus there is value in protecting the
stable value over a frequently changed value and thus a data
block that has not been written recently may need to be
transferred with a higher priority. The opposite decisions may
be implemented in different embodiments of the invention. In
addition, if the dirty data block is not in a hot region, the
method may determine whether or not the dirty data block is
close to a hot region at reference 1010. If the dirty data block
is close to ahot region, it may be determined to be hot too. The
rationale is that regions near hot regions are more likely to be
written than regions far from hot regions, thus hotness values
should have a smoothness locally. Furthermore, the hotness
prediction may be based on the number of times a dirty data
block being written during a period of time at reference 1014.

US 9,235,535 Bl

19

The dirty data block being written more often will be deemed
hot and thus be transferred in a high order.

Note one or more of references 1002-1014 may be used to
make hotness determination. The inclusion of one or more
references 1002-1014 depends on configuration of a primary
storage, the need to determine hotness of dirty data blocks,
resources available for determining hotness of dirty data
blocks, and other factors. In addition, the order of references
1002-1014 are for illustration only and other orders are pos-
sible to implement method 1000 as disclosed.

FIG. 11 is a block diagram illustrating a segment storage
engine according to one embodiment of the invention. For
example, deduplication storage engine 1100 may be imple-
mented as part of a deduplication storage system as described
above, such as deduplication storage engine 107 of FIG. 1.
Referring to FIG. 11, in one embodiment, deduplication stor-
age engine 1100 includes file service interface 1102, seg-
menter 1104, duplicate eliminator 1106, file system control
1108, and storage unit interface 1112. Deduplication storage
engine 1100 receives a file or files (or dataset(s)) via file
service interface 1102, which may be part of a file system
namespace of a file system associated with the deduplication
storage engine 1100. The file system namespace refers to the
way files are identified and organized in the system. An
example is to organize the files hierarchically into directories
or folders. File service interface 1102 supports a variety of
protocols, including a network file system (NFS), a common
Internet file system (CIFS), and a virtual tape library interface
(VTL), etc.

The file(s) is/are processed by segmenter 1104 and file
system control 1108. Segmenter 1104 breaks the file(s) into
variable-length segments based on a variety of rules or con-
siderations. For example, the file(s) may be broken into seg-
ments by identifying segment boundaries using a content-
based technique (e.g., a function is calculated at various
locations of a file, when the function is equal to a value or
when the value is a minimum, a maximum, or other value
relative to other function values calculated for the file), a
non-content-based technique (e.g., based on size of the seg-
ment), or any other appropriate technique. In one embodi-
ment, a segment is restricted to a minimum and/or maximum
length, to a minimum or maximum number of segments per
file, or any other appropriate limitation.

In one embodiment, file system control 1108 processes
information to indicate the segment(s) association with a file.
In some embodiments, a list of fingerprints is used to indicate
segment(s) associated with a file. File system control 1108
passes segment association information (e.g., representative
data such as a fingerprint) to an index (not shown). The index
is used to locate stored segments in storage units 1110 via
storage unit interface 1112. Duplicate eliminator 1106 iden-
tifies whether a newly received segment has already been
stored in storage units 1110. In the event that a segment has
already been stored in storage unit(s), a reference to the
previously stored segment is stored, for example, in a segment
tree associated with the file, instead of storing the newly
received segment. A segment tree of a file may include one or
more nodes and each node represents or references one of the
deduplicated segments stored in storage units 1110 that make
up the file. Segments are then packed by a container manager
(not shown) into one or more storage containers stored in
storage units 1110. The deduplicated segments may be fur-
ther compressed using a variation of compression algorithms,
such as a Lempel-Ziv algorithm before being stored.

When a file is to be retrieved, file service interface 1102 is
configured to communicate with file system control 1108 to
identify appropriate segments stored in storage units 1110 via

10

15

20

25

30

35

40

45

50

55

60

65

20

storage unit interface 1112. Storage unit interface 1112 may
be implemented as part of a container manager. File system
control 1108 communicates with an index (not shown) to
locate appropriate segments stored in storage units via stor-
age unit interface 1112. Appropriate segments are retrieved
from the associated containers via the container manager and
are used to construct the requested file. The file is provided via
interface 1102 in response to the request. In one embodiment,
file system control 1108 utilizes a tree (e.g., a segment tree) of
content-based identifiers (e.g., fingerprints) to associate a file
with data segments and their locations in storage unit(s). In
the event that a segment associated with a given file or file
changes, the content-based identifiers will change and the
changes will ripple from the bottom to the top of the tree
associated with the file efficiently since the appropriate con-
tent-based identifiers are easily identified using the tree struc-
ture.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Embodiments of the invention also relate to an apparatus
for performing the operations herein. Such a computer pro-
gram is stored in a non-transitory computer readable medium.
A machine-readable medium includes any mechanism for
storing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., computer-
readable) medium includes a machine (e.g., a computer) read-
able storage medium (e.g., read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices).

The processes or methods depicted in the preceding figures
may be performed by processing logic that comprises hard-
ware (e.g. circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium), or
acombination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described
may be performed in a different order. Moreover, some opera-
tions may be performed in parallel rather than sequentially.

Embodiments of the present invention are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of embodiments of
the invention as described herein.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary

US 9,235,535 Bl

21

embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense.

What is claimed is:

1. A computer-implemented method, comprising:

receiving a request at a primary storage for a backup of a

plurality of data blocks to a secondary storage, the plu-
rality of data blocks comprising a plurality of dirty data
blocks, wherein a dirty data block comprises a data
block that has changed since a previous backup of the
data block;

backing up the plurality of dirty data blocks to the second-

ary storage, wherein the backing up comprises:

determining a transfer order of the dirty data blocks
wherein a dirty data block is given a higher priority for
transfer based on a proximity of the dirty data block to
a hot region on the primary storage, and wherein the
transfer order is different from a sequential logical
order of the dirty data blocks provided by the primary
storage; and

transferring the dirty data blocks to the secondary stor-
age in the determined transfer order, wherein the sec-
ondary storage is a deduplication storage system.

2. The method of claim 1, wherein a dirty data block is in
proximity to the hot region of the primary storage based on at
least one of:

the dirty data block is physically close to a frequently

accessed region of the primary storage;

the dirty data block is physically close to another dirty data

block on the primary storage;

the dirty data block is physically close to a data block being

written to primary storage;

the dirty data block is physically close to a region of the

primary storage that frequently changes state, or

the dirty data block is physically close a number of dirty

data blocks on the primary storage.

3. The method of claim 1, wherein an access assessment of
a dirty data block is determined based on readiness of a stable
read resource for the dirty data block.

4. The method of claim 1, wherein a dirty data block is
given a higher priority based on at least one of:

the dirty data block is physically close to a region of the

primary storage containing frequently updated meta-
data;

contents of the dirty data block containing metadata about

a file having one or more dirty data blocks.
5. The method of claim 1, further comprising capturing a
snapshot of the plurality of data blocks, wherein the snapshot
represents a consistent state of the plurality of data blocks.
6. The method of claim 1, further comprising:
identifying the dirty data blocks by marking each data
block in a transfer state if the data block is dirty and
marking each data block in a normal state if the data
block is not dirty, wherein only data blocks in the trans-
fer state are transferred to the secondary storage; and

marking the dirty data blocks in the normal state after the
dirty data blocks have been transferred to the secondary
storage.

7. The method of claim 6, wherein markings of the data
blocks are stored in a bit vector having a plurality of bits, each
corresponding to one of the data blocks, wherein a bit having
a first logical value indicates that the corresponding data
block is dirty, and wherein a bit having a second logical value
indicates that the corresponding data block is not dirty.

10

15

20

25

30

40

45

50

55

60

22

8. The method of claim 6, wherein markings of the data
blocks are stored in a bit vector having a plurality of bits, each
corresponding to one of the data blocks, wherein a bit having
a first logical value indicates that the corresponding data
block is the transfer state, and wherein a bit having a second
logical value indicates that the corresponding data block is in
the normal state.

9. The method of claim 6, further comprising:

in response to receiving data to be written to a first data

block at the primary storage during the transfer,
preserving current contents of the first data block if the first

data block is in the identified set of data blocks; and
committing the received data to the first data block.

10. The method of claim 6, wherein marking of dirty data
blocks from the transfer state to the normal state is performed
after all dirty data blocks have been transferred from the
primary storage to the secondary storage.

11. The method of claim 6, wherein when a particular dirty
data block has been transferred from the primary storage to
the secondary storage, that particular dirty data block is
marked from the transfer state to the normal state, while
remaining dirty data blocks are still being transferred.

12. The method of claim 1, wherein the secondary storage
is one of: a backup storage system, a replica of the primary
storage, an archival storage system, and a snapshot repository
of the primary storage.

13. A non-transitory computer-readable storage medium
having instructions stored therein, which when executed by a
processor, cause the processor to perform a method, the
method comprising:

receiving a request at a primary storage for a backup of a

plurality of data blocks to a secondary storage, the plu-
rality of data blocks comprising a plurality of dirty data
blocks, wherein a dirty data block comprises a data
block that has changed since a previous backup of the
data block;

backing up only the plurality of dirty data blocks to the

secondary storage, wherein the backing up comprises:

determining a transfer order of the dirty data blocks
wherein a dirty data block is given a higher priority for
transfer based on a proximity of the dirty data block to
a hot region on the primary storage, and wherein the
transfer order is different from a sequential logical
order of the dirty data blocks provided by the primary
storage; and

transferring the dirty data blocks to the secondary stor-
age in the determined transfer order, wherein the sec-
ondary storage is a deduplication storage system.

14. The non-transitory computer-readable storage medium
of claim 13, wherein a dirty data block is in proximity to the
hot region of the primary storage based on at least one of:

the dirty data block is physically close to a frequently

accessed region of the primary storage;

the dirty data block is physically close to another dirty data

block;

the dirty data block is physically close to a data block being

written primary storage;

the dirty data block is physically close to a region of the

primary storage containing frequently updated meta-
data;

the dirty data block is physically close to a region of the

primary storage that frequently changes state, or

the dirty data block is physical closeness to a number of

dirty data blocks.

15. The non-transitory computer-readable storage medium
of claim 13, wherein an access assessment of a dirty data

US 9,235,535 Bl

23

block is determined based on readiness of a stable read
resource for the dirty data block.

16. The non-transitory computer-readable storage medium
of claim 13, wherein a dirty data block is given a higher
priority based on at least one of:

the dirty data block is physically close to a region of the

primary storage containing frequently updated meta-

data; and

contents of the dirty data block containing metadata about

a file having one or more dirty data blocks.

17. The non-transitory computer-readable storage medium
of claim 13, further comprising capturing a snapshot of the
plurality of data blocks, wherein the snapshot represents a
consistent state of the plurality of data blocks.

18. The non-transitory computer-readable storage medium
of claim 13, further comprising:

identifying the dirty data blocks by marking each data

block in a transfer state if the data block is dirty and

marking each data block in a normal state if the data
block is not dirty, wherein only data blocks in the trans-
fer state are transferred to the secondary storage; and

marking the dirty data blocks in the normal state after the
dirty data blocks have been transferred to the secondary
storage.

19. A primary storage, comprising:

adata protection logic configured to receive a request at the

primary storage for a backup of a plurality of data blocks

to a secondary storage, the plurality of data blocks com-
prising a plurality of dirty data blocks, wherein a dirty
data block comprises a data block that has changed since

a previous backup of the data block;

backup the plurality of dirty data blocks to the secondary

storage, wherein the backup comprises:

a transfer order determinator configured to determine a
transfer order of the dirty data blocks wherein a dirty
data block is given a higher priority for transfer based
on a proximity of the dirty data block to a hot region
on the primary storage, and wherein the transfer order
is different from a sequential logical order of the dirty
data blocks provided by the primary storage; and

the data protection logic further configured to transfer
the dirty data blocks to the secondary storage in the

24
determined transfer order, wherein the secondary
storage is a deduplication storage system.
20. The primary storage of claim 19, wherein a dirty data

block is in proximity to the hot region of the primary storage

5 based on at least one of:

10

15

25

40

the dirty data block is physically close to a frequently
accessed region of the primary storage;

the dirty data block is physically close to another dirty data
block on the primary storage;

the dirty data block is physically close to a data block being
written to the primary storage;

the dirty data block is physically close to a region of the
primary storage that frequently changes state, or

the dirty data block is physically close to a number of dirty
data blocks on the primary storage.

21. The primary storage of claim 19, wherein an access

assessment of a dirty data block is determined based on readi-
ness of a stable read resource for the dirty data block.

22. The primary storage of claim 19, wherein a dirty data

block is in proximity to the hot region of the primary storage
based on at least one of:

the dirty data block is physically close to a region of the
primary storage containing frequently updated meta-
data;

contents of the dirty data block containing metadata about
a file having one or more dirty data blocks.

23. The primary storage of claim 19, wherein the data

protection logic further configured to capture a snapshot of
the plurality of data blocks, wherein the snapshot represents a
consistent state of the plurality of data blocks.

24. The primary storage of claim 19, further comprising:

a change tracker configured to identify the dirty data blocks
by marking each data block in a transfer state if the data
block is dirty and marking each data block in a normal
state if the data block is not dirty, wherein only data
blocks in the transfer state are transferred to the second-
ary storage; and

mark the dirty data blocks in the normal state after the dirty
data blocks have been transferred to the secondary stor-
age.

